مبانی نظری تحقیق اهميت آموزش رياضيات (docx) 38 صفحه
دسته بندی : تحقیق
نوع فایل : Word (.docx) ( قابل ویرایش و آماده پرینت )
تعداد صفحات: 38 صفحه
قسمتی از متن Word (.docx) :
اهميت آموزش رياضيات
2-3-1. چرا رياضي ؟
کاربرد ارقام
کاربرد توابع و روابط بین اعداد
کاربرد معادله و دستگاه معادلات خطی
کاربرد تقارنها (محوری و مرکزی ) و دَوَرانها
کاربرد مساحت
کاربرد چهار ضلعیها
کاربرد خطوط موازی و تشابهات
کاربرد آمار و میانگین
مقاطع مخروطی
ترسیمات هندسی
کاربرد ریاضیات در هنر و کامپیوتر
کاربرد حجم
کاربرد رابطهی فیثاغورس
2-4) طبقهبندي آندرسون :
2-4-1-2- فهميدن :
تفسیر کردن
طبقهبندی کردن
خلاصه کردن
استنباط کردن
مقایسه کردن
تبیین کردن
2-7-1-3- به کار بستن
اجرا کردن
انجام دادن (مورد استفاده قرار دادن)
2-7-1-4- تحليل کردن
متمایز کردن
سازمان دادن
نسبت دادن
2-7-1-5- ارزشيابي
2-7-1-6- آفريدن (خلق کردن) :
تولید کردن
طرحریزی
پدید آوردن
2-7-2- بعد دانش:
ابعاد اين بعد شامل:
الف) اطلاعات:
ب) روندهاي ذهني:
ج) روندهاي رواني ـ حركتي:
4- دانش فراشناختی :
آزمون تیمز(TIMSS)
سخن پایانی
پيشينه پژوهش
- در ایران
-در خارج از کشور:
خلاصه پيشينههاي پژوهش
فهرست منابع و مأخذ:
منابع فارسي
منابع انگليسي
اهميت آموزش رياضيات
آموزش رياضي يعني هر چيزي كه مربوط به آموزش و يادگيري رياضيات ميشود. سابقه آموزش رياضي به عنوان يك رشته دانشگاهي به كمتر از يك قرن ميرسد زمان شروع اين رشته از هنگامي بود كه آموزش معلمان به دانشگاهها برده شد.
در چنين شرايطي نظام تعليم و تربيت ميتواند مدعي و منادي احياء دانش رياضي به عنوان زيرساخت و مفروضه اصلي در تمامي دروس علوم پايههاي تحصيلي باشد. در دنياي امروز علم رياضي به منزله خون در پيكره عظيم ساير علوم ميباشد. آموزش رياضيات نه تنها يك علم است بلكه الگويي است براي آموزش صحيح ساير علوم. ذهنهاي خلّاق، مبتكر و جسور به منظور پاسخگويي به سؤالات پيرامون خود بيشك منتج از يك نظام يافتگي است كه ماهواً دانش رياضي اين توانايي را خواهد داشت تا آن را احيا كند. فتح كرات آسماني، پرتاب سفينهها، ساخت زير درياييهاي هستهاي و ورود به دنياي فرا پيچيده با برخورداري از دهها، صدها و هزارها تكنولوژي مدرن كه هر كدام پاسخگوي بخشي از معضلات جامعه بشري در اين هزاره شگرف ميباشد. از اين رو ميتوان گفت آموزش صحيح رياضي يعني آموزش صحيح همه علوم. بنابرين آموزش رياضيات از اهميت زيادي برخوردار است اما نکته مهمتر اينکه روش اين آموزش به چه صورتي بايد باشد؟ آيا صرف تدريس سنتي و سخنراني معلم و گوش دادن دانشآموز، کفايت موفقيّت در اين آموزش را محرز مينمايد؟ آيا با داشتن چند مؤلفه کتاب، دانشآموز، معلم و روش تدريس يک بعدي، به هدف غايي اين اصل نايل گرديدهايم؟ آيا با ظهور روز افزون فناوريهاي جديد و ورود آن به چرخه آموزش و يادگيري، آموزش دروس پايه و عليالخصوص رياضي، نيازمند يک بازنگري اساسي نيست؟
اين در حالي است که به كارگيري فناوري در ياددهي- يادگيري ميتواند در زمينههايي مانند آموزش مهارتهاي پايه «آموزش مهارتهاي پيشرفته» و «ارزيابي آموختهها» اثر بگذارد و ميزان كمي وكيفي يادگيري را بهبود بخشد، در ضمن امروزه اشخاصي كه روش استفاده از رايانه را ندانند بيسواد محسوب ميشوند و تبادل داده و ارتباطات وكسب مهارتها به كمك تكنولوژي سريع عصر امروز حاصل ميگردد و از اين تكتولوژي ميتوان در انتقال دانش و داده و كسب مهارت براي دانشآموزان بهره برد. اين امر در درس رياضي به دليل ساختار مشخصتر و دقيقتر نسبت به ساير علوم و دروس به دلايل عديدهاي چون نسبي بودن مفاهيم اين رشتهها، متغير بودن پارامترهاي سنجش آنان، عيني نبودن تجربيات و کاربرد متفاوت علوم ديگر در زندگي روزمره و... بيشتر مورد توجه قرار دارد و به نظر ميرسد که ميتواند جايگاه خويش را در پژوهشهاي علم محور، حفظ نمايد. )دفتر مديريت طرح توسعة فناوري داده و ارتباطات، 1383) هم چنين
1- نسبت به ساير دروس، بيشتر ميتوان در درس رياضي براي طراحي و تدوين تمرينات، از آموزش مبتني بر رايانه بهره گرفت.
2ـ در درس رياضي از فناوري در قالب نرمافزار چند رسانهاي، براي انواع سبكهاي يادگيري در آموزش موضوعات آن بيشتر ميتوان استفاده كرد.
3ـ با استفاده از منابع الکترونيکي(صوت، تصوير، فيلم و ...) يادگيري مهارتهاي ساده را در فراگير تقويت كرد.
4ـ با استفاده از فناوريهاي تصويري و صوتي، موضوعات آموزشي را قابل تجسم و تصور نموده و با به وجود آوردن جاذبههاي زياد، به آنها صورت واقعي بخشيد و اين امر در خصوص رياضي عينيتر است.
5- در قالب شكلهاي متنوع، مهارتهاي جديدي را به وجود آورد كه كاربرد تكنولوژي را آسان سازد، آن نوع فناوري كه بر يادگيري تاثير نمايان بگذارد.
6ـ عنصر تعامل درفناوريهاي ياددهي- يادگيري در درس رياضي نمود بيشتري نسبت به ساير دروس دارد.
7ـ به فراگيران در آموختن اطلاعات پيچيده و طبقهبندي و سازماندهي آنها كمك كرد و به آنها آموخت كه چگونه شباهتها و افتراقها را در ميان اطلاعات ارائه شده تشخيص دهند و دست به استنباط و نتيجهگيري ذهني بزنند. هم چنين در يادگيريهاي ذهني به آنها كمك كرد تا بياموزند، چگونه يافتههاي خود را با استفاده از مهارتهاي پيشرفته در به كارگيري تكنولوژي آموزشي، با ديگران در ميان بگذارند.
8ـ به فراگيران كمك كرد، مهارتهاي بهتري در زمينهي سازماندهي امور و حل مسائل به دست آورند.
دلايل و موضوعاتي که مطرح گرديد، از جمله دلايل انتخاب درس رياضي در اين پژوهش است و نگارنده را بر آن داشت که علاوه بر اينکه خود، معلم رياضي بوده و کمابيش از روشهاي ياد شده در تدريس استفاده نموده است، بلکه دريچهاي بيابد براي آموزش بهتر و فعالتر اين درس
2-3-1. چرا رياضي ؟
نتايج پژوهشات اخير نشانگر افت شديد در درس رياضي در مقاطع راهنمايي و دبيرستان است و به اين دليل است كه دانشآموز رياضي را درك نميكند و با آن نميتواند ارتباط برقرار كند بنابراين به رياضيات و آموزش آن علاقه ندارد. او در آموزش مشكل دارد و بالطبع در رابطه با آموزش درس رياضي با معلم رياضي نميتواند ارتباط صميمانه و مناسبي داشته باشد. رياضي با شيريني خاص خود هنوز بر شمار زيادي از دانشآموزان سنگين و خشك به نظر ميآيد. با توجه به اينكه آموزش صحيح و مؤثر در رياضيات نياز به آشنايي و شناخت عميق از ماهيّت رياضيات و اصول حاكم بر فعاليّت آن را دارد، ضروري به نظر ميرسد كه بحثي پيرامون تحول و دگرگوني روش آموزش آن براي معلمين و دانشجويان رياضي ارائه شود تا اين امر كمك نمايد كه معلمين رياضي ديد خود را نسبت به رياضيات وسعت بخشيده و نهايتاً بتوانند تدريس موفقي در رياضيات داشته باشند و در عين حال براي كساني كه قصد آشنايي با رياضيات و ماهيت و نحوه فراگيري آن را دارند ميتواند مفيد واقع شود و از مطالبي كه در اينجا مطرح ميشود استفاده كرده و بر روند فراگيري خود جهت صحيحي بدهند. پيش از آن ذکر کاربرد و ارتباط تنگاتنگ رياضي با زندگي روزمره و نحوهي تأثير گذاري در روند پيشرفت انسان در اعصار مختلف، لازم و ضروري به نظر ميرسد. ارتباطي که از بزرگان اين رشته آغاز گرديده و به تجربيات عيني آنان، منجر شده است.
کاربرد ارقام
در زمانهای قدیم هر قدمی که در راه پیشرفت تمدّن برداشته میشد، بر لزوم استفاده از اعداد میافزود. اگر شخصی گلهای از گوسفندان داشت، میخواست آن را بشمرد، یا اگر میخواست معبد یا هرمی بسازد، باید میدانست که چقدر سنگ برای آن لازم دارد. اگر دارای زمین بود، میخواست آن را اندازهگیری کند. اگر قایقش را به دریا میراند، میخواست فاصلهی خود را از ساحل بداند. و بالاخره در تجارت و مبادلهی اجناس در بازارها، باید ارزش اجناس حساب میشد. هنگامی که آدمی محاسبه با ارقام را آموخت، توانست زمان، فاصله مساحت، حجم را اندازهگیری کند. با بکار بردن ارقام، انسان بر دانش و تسلّط خود بر دنیای پیرامونش افزود.
کاربرد توابع و روابط بین اعداد
کاربرد روابط بین اعداد و توابع و نتیجهگیریهای منطقی در نوشتن الگوریتمها و برنامهنویسی کامپیوتری است. مفهوم تابع یکی از مهمترین مفاهیم ریاضی است و در اصل تابع نوعی خاص از رابطههای بین دو مجموعه است و با توجه به این که دنبالهها هم حالت خاصی از تابع است - تابعی که دامنه آن مجموعهی اعداد{ . . . و ۲ و ۱ و ۰ } است – دنبالههای عددی در ریاضی و کامپیوتر کاربرد فراوان دارند . برای ساخت یک برنامه اساساٌ چهار مرحله را طی میکنیم :
۱) تعریف مسئله ۲) طراحی حل ۳) نوشتن برنامه ۴) اجرای برنامه
لازم به ذکر است که گردآیههایی که در مرحله دوم حاصل میشود را اصطلاحاً الگوریتم مینامیم. که این الگوریتمها به زبان شبه کد نوشته میشود وشبیه زبان برنامهنویسی است و تبدیل آنها به زبان برنامهنویسی را برای ما بسیار ساده میکند. « هیچ دانستهی بشر را نمیتوان علم نامید، مگر اینکه از طریق ریاضیّات توضیح داده شده و ثابت شود. » ( لئوناردو داوینچی )
کاربرد معادله و دستگاه معادلات خطی
دستگاههای معادلات خطی اغلب برای حساب کردن بهرهی ساده، پیشگویی، اقتصاد و پیدا کردن نقطهی سر به سر به کار میرود.
معمولاً هدف از حل کردن یک دستگاه معادلات خطی، پیدا کردن محل تقاطع دو خط میباشد. در مسائل دخل و خرج که در مشاغل مختلف وجود دارد، پیداکردن نقطه تقاطع معادلات خط یعنی همان پیدا کردن نقطهی سر به سر. در اقتصاد هم نقطه تقاطع معادلات خطی، عبارت است از: قیمت بازار یا نقطهای که در آن عرضه و تقاضا با هم برابر باشند.
کاربرد تقارنها (محوری و مرکزی ) و دَوَرانها
مباحث تقارنها و دورانها که به تبدیلات هندسی معروف هستند، درصنعت و ساختن وسائل و لوازم زندگی استفاده میشوند. مثلاً در بافتن قالی و برای دادن نقش و نگار به آن از تقارن استفاده میشود. در کوزهگری و سفالگری از دوران محوری استفاده میشود. همچنین در معماریهای اسلامی اغلب از تقارنها کمک گرفته میشود. چرخ گوشت، آب میوهگیری، پنکه، ماشین تراش با دَوَرانی که انجام میدهند، تبدیل انرژی میکنند. علاوه بر آن تبدیلات هندسی برای آموزش مطالبی از ریاضی استفاده میشوند، مانند: مفهوم جمع و تفریق اعداد صحیح با استفاده از بردار انتقال موازی محور.
نقطهی سر به سر: در بسیاری از مشاغل، هزینهی تولید C و تعداد X کالای تولید شده را میتوان به صورت خطی بیان کرد.به همین ترتیب، در آمد R حاصل از فروش X قلم کالای تولیدشده را نیز میتوان با یک معادلهی خطی نشان داد. وقتی هزینهی C از در آمد R حاصل از فروش بیشتر باشد، این تولید ضرر میدهد و وقتی در آمد R از هزینهی C بیشتر باشد، تولید سود میدهد. هر گاه در آمد R و هزینهی C مساوی باشند، سود و زیانی در بین نیست و نقطهای که در آن R=C باشد، نقطهی سربه سر نامیده میشود.
کاربرد مساحت
مفهوم مساحت و تکنیک محاسبه مساحت اشکال مختلف، از اهمّ مطالب هندسه است. به سبب کاربرد فراوانی که در زندگی روزمرّه مثلاً برای محاسبهی مساحت زمینها با اَشکال مختلف و همچنین درفیزیک و جغرافیا و سایر دروس دانستن مساحتها لازم به نظر میرسد.
کاربرد چهار ضلعیها
شناخت چهارضلعیها و دانستن خواص آنها، برای یادگیری مفاهیم دیگر هندسه لازم است و ضمناً در صنعت و ساخت ابزار و وسائل زندگی و همچنین برای ادامه تحصیل و همینطور در بازار کار نیاز به دانستن خواص چهارضلعیها احساس می شود .
کاربرد خطوط موازی و تشابهات
از خطوط موازی و مخصوصاً متساوی الفاصله، در نقشهکشی و ترسیمات استفاده میشود. و در اثبات احکامی نظیر قضیه تالس۱ و عکس آن، همچنین تقسیم پارهخط به قطعات متساوی یامتناسب، تشابهات نیز از مفاهیم مهم هندسه و اساس نقشهبرداری، کوچک و بزرگ کردن نقشهها و تصاویر و عکسها میباشد.
مبحث تشابهات در هندسه دریچهای است به توانائیهای جدید برای درک و فهم و کشف مطالب تازهی هندسه، به همین سبب آموزش خطوط متوازی و متساویالفاصله و مثلثهای متشابه به حد نیاز دانشآموز مقطع راهنمایی لازم است .
تالس دانشمند یونانی نشان داد که به وسیلهی سایهی یک شیء و مقایسهی آن با سایهی یک خطکش میتوان ارتفاع آن شیء را اندازه گرفت . با استفاده از اصولی که تالس ثابت کرد، میتوان بلندی هر چیزی را حساب کرد. تنها چیزی که نیاز دارید، یک وسیلهی ساده اندازهگیری است که میتوانید [آن را ] از یک قطعه مقوا و تکهای چوب درست کنید.( مراجعه شود به کتاب درجهان ریاضیات نوشتهی اریک او بلاکر- صفحهی ۳۰ )
تالس در زمان خود به کمک قضیهی خود ارتفاع اهرام مصررا محاسبه کرد همچنین وقتی از مصر به یونان بازگشت، فاصلهی یک کشتی را از ساحل به کمک قضیه خود اندازه گرفت. روش دیگری هم برای محاسبه بلندی وجود دارد و آن استفاده از نسبتهای مثلثاتی است.
کاربرد آمار و میانگین
وقتی کسی از مقادیر عددی کمک میگیرد، تا یک موقعیّت را توضیح دهد، او وارد قلمرو آمار شده است. آمار معمولاً اثر تعیین کنندهای دارد. اگر چه ممکن است مفید یا گمراه کننده باشد. ما عادت کردهایم، که پدیدههای زیادی نظیر موارد زیر را با توجه به آمار، پیشبینی کنیم:
احتمال پیروزی یک کاندیدای ریاست جمهوری، وضعیت اقتصادی(تورم، در آمد ناخالص ملی، تعداد بیکاران، کم و زیاد شدن نرخ بهرهها و نرخ سهام، بازار بورس، میزان بیمه، آمار طوفان، جزر و مد) و غیره.
قلمرو آمار به طور مرتّب درحال بزرگ شدن است.آمار میتواند در موارد زیادی، برای قانع کردن مردم و یا انصراف آنها از یک تصمیم مؤثّر باشد. به عنوان مثال: اگر افراد احساس کنند که رأی آنها نتیجهی انتخابات را تغییر نخواهد داد، ممکن است از شرکت در انتخابات صرفنظر کنند.
در عصر ما آمار ابزار قوی و قانع کننده است، مردم به اعداد منتشر شدهی حاصل از آمارگیری، اعتماد زیادی نشان میدهند.
به نظر میرسد وقتی یک وضعیّت و موقعیّت با توسل به مقادیر عددی توصیف میشود، اعتبار گزارش در نظر مستمعین بالا میرود.
مقاطع مخروطی
در هوای گرم بستنی بسیار خوشمزه و دلچسب است. به خصوص اگر بستنی قیفی داشته باشید ودر حالی که روی یک صندلی و در سایه درختی نشسته باشید و فارغ از جار و جنجال روزگار، به خوردن بستنی مشغول باشید. شاید همه چیز از ذهن شما بگذرد مگر همان بستنی قیفی که مشغول خوردن آن هستید.
این مطلب توجه یک ریاضیدان بلژیکی خوش ذوق را به خود جلب کرد و آن را برای توضیح یکی ازمطالب مهم ریاضی[یعنی مقاطع مخروطی] بکار برد. مقاطع مخروطی یکی از مباحث مهم و کاربردی در ریاضیات بوده وهست .
ترسیمات هندسی
در ترسیمات و آموزش قسمتهای دیگر هندسه، نیاز فراوان به شناخت دایره و اجزا و خواص آن پیدا میشود، لذا در دورهی راهنمایی، مفهوم دایره، وضع نقطه و خط نسبت به دایره، زاویه مرکزی، زاویه محاطی و تقسیم دایره به کمانهای متساوی آموزش داده میشود و به این ترتیب دانشآموز برای یادگیری مطالب بعدی و استفادهی عملی از آنها آماده میشود. (همچنین از زاویهی محاطی و اندازهی آن برای نورپردازی در سالنها استفاده میشود. )
کاربرد ریاضیات در هنر و کامپیوتر
تاریخ نشان میدهد که در طی قرون، هنرمندان وآثارشان تحت تأثیر ریاضیات قرار گرفتهاند و زیبائی اثرشان به آگاهی آنها از این دانش بستگی داشته است. ماهم اکنون استفادهی آگاهانه از مستطیل طلایی، و نسبت طلایی را در هنر یونان باستان، به ویژه درآثار پیکرتراش یونانی« فیدیاس» دقیقآ مشاهده میکنیم.
مفاهیم ریاضی از قبیل نسبتها، تشابه، پرسپکتیو، خطای باصره تقارن، اشکال هندسی، حدود و بینهایت در آثار هنری موجود از قدیم تا به امروز مکمل زیبایی آنها بوده است. اکنون نیز « کامپیوتر » به کمک ریاضیات هنر را از ابتدایی تا مدرن توسعه میدهد.
اگر آگاهی هنرمندان با ریاضیات و استفادهی عملی از آن نبود، برخی از آثار هنری خلق نمیشدند. بهترین نمونهی آن تصاویر موزائیکی هنرمندان مسلمان وگسترش این شکلهای هندسی به وسیلهی«M.S.Esher» جهت نشان دادن اجسام متحرک است. اگر هنرمندان به مطالعات توجهی نداشتند وخصوصیات اشکال را از نظر تطابق، تقارن انعکاس ، دوران ، انتقال و ... کشف نکرده بودند، خلق این همه آثار هنری امکان پذیر نبود .
« هنر ریاضیات ،هنرپرسیدنِِِ پرسشهای درست است وقطعه ی اصلی کار در ریاضیات تخیل است و آن چه که این قطعه ی اصلی رابه حرکت درمی آوردمنطق می باشدوامکان استدلال منطقی آن زمان پدید میآیدکه ما پرسشهای خود رادرست مطرح کرده باشیم.» (نوربرت ونیز )
کاربرد حجم
به سبب نیازی که دانش آموز در زندگی روز مرّه و همین طور در بکار گیری آن در سایر علوم نظیر ، شیمی، فیزیک، زیست شناسی و مخصوصاً هنر برایش پیش می آید، همچنین در شغلهایی که در جامعه وجود دارد و یا در ادامه تحصیل دانستن دستورهای محاسبه ی حجم اجسام، یادگیری مبحث حجم ضروری به نظر می رسد .
کاربرد رابطهی فیثاغورس
فیثاغورث دربارهی رابطههای عددی که درساختمانهای هندسی وجود دارد تحقیق می کرد . او مثلث معروف به مثلث مصری را ، که ضلعهای آن با عددهای ۳ و ۴ و ۵ بیان می شود، را می شناخت .
مصریها می دانستند که چنین مثلثی قائم الزاویه است .و ازآن برای تعیین زاویه های قائمه در تجدید تقسیم بندی زمینهای اطراف نیل ،که هر سال بر اثر طغیان آب شسته می شد ، استفاده می کردند.
یکی از مشکلترین مسائل در ساختن اهرام و معبدها ،طرح شالوده بنا به شکل مربع کامل بود که هم تراز باسطح افق باشد . جزئی اشتباه به قیمت از شکل افتادن همه ی بنا تمام می شد .
مصریان این مشکل رابا ساختن شاقول از میان برداشتند. نخستین شاقول احتمالاً تکه ریسمان یا نخی بود که وزنه ای به آن آویخته بودند و ان را در برابر بنا می گرفتند تا وزنه ی آن به زمین صاف برسد . در این حالت نخ می بایست کاملاً عمودیا شاقول باشد و زاویه ی بین آن و زمین صاف یک زاویه ی قائمه بسازد.
همچنین معماران کشف کردند که چگونه میتوان با ریسمانهای اندازهگیری که درفاصلههای مساوی گره خورده بودند، مثلثهای قائمالزاویهای بسازند و این مثلثها را راهنمای خویش در ساختن گوشهها ( نبش ها)ی بنا قرار دهند.
بدون شک مهمترین هدف ما از بیان مطالب فوق این نکته است که بتوانیم دانشآموزان را با اهداف کتب ریاضی آشنا کنیم و آنها را نسبت به ریاضیات علاقمند کنیم. تجربه نشان داده است که حتی در رشتههای فنّی، مانند خیاطی هم اهداف پرورشی ریاضی اهمیت دارند به همین خاطر دربرنامهی درسی تمام رشتههای تحصیلی درس ریاضی گنجانده شده است.
در کتب جدید ریاضی سعی شده است که مطالب طوری تدريس و بیان شوند که دانشآموز نفهمیده مطلبی را نپذیرد. هر چند بعضی مطالب شهودی است، ولی دانشآموز از طریق درک مفاهیم درس یاد میگیرد و به تدریج با فرایند تفکر ریاضی آشنا میشود. معلمین هم باید به این نکته توجه داشته باشند و تصور نکنند که هدف آموزش ریاضی فقط در یاد دادن چند قاعده و حل ماشینی مسائل خلاصه میشود، زيرا رياضيات و آموزش آن داراي اهميت و جايگاه ويژهاي است(مهدي، 1387، 64).
2-4) طبقهبندي آندرسون:
در طبقهبندی آندرسون، یک بعد دانش و یک بعد فرایند شناختی وجود دارد. بعد فرایند شناختی در برگیرنده به یادآوردن, فهمیدن, به کار بستن، تحلیل کردن، ارزشیابی کردن و آفریدن است و این طبقهبندی به صورت سلسه مراتبی و از عینی به انتزاعی و ساده به پیچیده تنظیم یافته است. در این طبقهبندی شش مقوله اصلی از شکل اسم به فعل تغییر داده شده است و دلیل این تغییر این است که طبقهبندی اشکال متفاوت تفکر را منعکس میکند و تفکر هم یک فرایند فعال است. افعال وقایع و فعالیّتها را توصیف میکنند در حالی که اسم نمیتواند این ویژگیها را توصیف کند. دانش در طبقهبندی آندرسون به فعل به خاطر سپردن یا به یاد آوردن تغییر شکل داده است به این علت که دانش نتیجه یا محصول تفکر است نه یک شکل خاص از تفکر. درک مطلب و ترکیب به درک کردن و خلاقیّت تغییر عنوان داده شدهاند و چنین تغییری به این علت بوده که عناوین جدید به صورت بهتری منعکس کننده طبیعت تفکر در هر کدام از این مقولهها میباشند. دراين طبقهبندي يک بعد دانش و يک بعد فرايند شناختي وجود دارد.
2-4-1- بعد فرآیند شناختي: نظام شناختي شامل 6 سطح است كه به ترتيب عبارتاند از: به یاد آوردن، فهميدن، به کار بستن، تحليل کردن، ارزشیابی، آفریدن(سيف، 1389، 28).
2-4-1-1- به ياد آوردن: زماني که هدف آموزش يک معلم، حفظ مطالب آموزش داده شده به همان صورت اوليه از سوي دانشآموز است، اين فرايند به يادآوردن (يادآوري) نام دارد. يادآوري نيازمند بازآوري داده از حافظه دراز مدت است.
به طور مثال زماني که گفته ميشود (نام پيامبران اولوالعزم(ع) را به ترتيب نام ببريد.) يا (حاصل ضرب دو عدد 9 در 8 چه عددي است؟) از فرآيند يادآوري و ياد آوردن، کمک گرفتهايم. این طبقه از دو خرده طبقه زیر تشکیل یافته است:
1- بازشناسي: مثال : رياضيدانان معروف را معرفي کند.
2- بازيابي: مثال : پاسخگويي به سئوالات جدول ضرب
2-4-1-2- فهميدن: وقتي گفته ميشود دانشآموزان ميفهمند بدان معني است که بتوانند از مواد شفاهي، کتبي، يا تصويري کسب معني کنند. فهميدن زماني صورت ميپذيرد که دانشآموز بتواند بين دانش تازه و دانشهاي قبلي خود ارتباط برقرار کند. یادگیری در این سطح عبارت است از توانایی پی بردن به مفهوم یک مطلب و تبیین آن با جملههایی که خود شخص میسازد؛ بیآنکه میان آن مطلب با مطالب دیگر چندان ارتباطی برقرار کند. یادگیری در این سطح مستلزم آگاهی از اصول و شرایط است.
مثلاً اگر پرسيده شود، با توجه به سبک و کلمات به کار برده در يک شعر، به شاعر آن و حدود قرني که شاعر در آن مي زيسته، اشاره کنند، در اين جا دانش آموز از اطلاعات گذشته خود و ترکيب آن با مطالب جديد، به پاسخ خواهد رسيد و فهميدن صورت پذيرفته است.
فهميدن زماني است كه شخص بتواند درباره يك موضوع، پيشبيني كرده و اجزاي آن را توضيح داده، علتهاي بوجود آورنده آن را بیابد، فرايندها و مكانيزمهاي آن را بتوان ترسيم كند، متوجه شود كه چه چيزي براي آن خوب است و چه چيزي براي آن بد است، درباره آن بتواند دست به استدلال بزند و يا مناظره كند، بتواند از آن دفاع كند و يا به توجيه و تبيين آن بپردازد، مسائل مرتبط با آن را حل كند، آن را خلاصه كند و يا به زبان خودش آن را بيان كند، دربارهاش مثال بزند، تفسير كند و كارهايي از اين قبيل. مثلاً يك پزشك وقتي، مشکل بیمار را فهميده است كه بتواند علت بوجود آورنده آن را پيدا كرده و درباره آن براي بیمار، داروي صحيح تجويز كرده و توصيههاي خوبي به بيمار كند. اگر كسي يك مفهوم رياضي را فهميده يعني اينكه ميتواند مسائلي كه درباره آن مفهوم است را حل كند حتي اگر مسئله به صورت نو و خلاقانهاي طرح شده باشد.
همچنین حفظ كردن به معني فهميدن نيست. حفظ كردن، توهمي از فهميدن است. آنچه كه معمولاً در نظامهاي آموزشي سنتي تاكيد ميشود، حفظ كردن است. كسي كه قانوني را حفظ كرده، به اين معني نيست كه آن را فهميده است. اين شخص فقط ميتواند آن قانون را تشخيص دهد، آن را بيان كند، تبصرههاي آن را نام ببرد و اينكه در چه حالتهاي مشخصي ميتوان از آن قوانين استفاده كرد. كسي كه قانوني را حفظ كرده، نميتواند نگاه سيستمي به آن داشته باشد و اينكه ارتباط آن با بقيه قوانين چيست و چه هنگامي استفاده از آن قانون درست نيست حتي اگر مجاز به انجامش باشد.
طبقهی فهمیدن شامل هفت خرده طبقه1-تفسیر کردن،2-مثال آوردن،3-طبقهبندی کردن،4-مقایسه کردن،5-خلاصه کردن،6-استنباط کردن و 7-تبیین کردن است.(اندرسون، کراتول و همکاران، 2001، 110)
تفسیر کردن
يعني تبديل داده از شکلي به شکل ديگر، تفسير شامل تغيير مطلب از کلامي به کلام ديگر، از شکل به کلام، از کلام به شکل، از اعداد به کلام، از کلام به اعداد، از نُت به موسيقي يا به آهنگ، و مانند اينهاست. اصطلاح ديگر براي تفسير کردن برگرداندن (ترجمه کردن) است.
تفسير :تفسير شامل تفکر در باره اهميت نسبی انديشه هايی است که فهميدن آنها ممکن است مستلزم نظم بخشی (تنظيم ) مجدد انديشه ها ،به صور ترکيبی تازه در ذهن فرد باشد.در واقع تفسير تنها ترجمه کلمات و عبارات نيست ،بلکه درک تدابير گوناگون بکار رفته در انتقال مفاهيم و يک نوع بازاريابی مفاهيم در ذهن است . به عبارت ديگر ،تفسير شامل شايستگی در تشخيص نکات اساسی و جدا کردن آن از قسمت های کم اهميت تر است .بطور کلی تفسير توضيح دادن يا بيان کردن مطالب از طريق معنی کردن يا دادن مثالها يا خلاصهای از آنها. در حالی که ترجمه شامل برگردان عينی و بخش به بخش مطلب از يک صورت به صورتی ديگر است، تفسير مستلزم باز چينی و باز آرايی مطلب يا ارائه ديدگاهی تازه از آن است .برای تفسير يک ارتباط، خواننده بايد قادر باشد که هريک از قسمتهای اصلی آن ارتباط را ترجمه کند. یعنی تبدیل داده از شکلی به شکل دیگر، تفسیر شامل تغییر مطلب از کلامی به کلام دیگر، از اعداد به کلام، از کلام به اعداد، از نُت به موسیقی یا به آهنگ، و مانند اینهاست. اصطلاح دیگر برای تفسیر کردن برگرداندن (ترجمه کردن) است.
مانند:
تبدیل جملههای عددی بیان شده در قالب کلمات به صورت معادلههای جبری بیان شده در قالب نمادها مانند:{...، 8،6،4،2}=
مثال آوردن
ذکر مورد یا مثالی خاص از یک مفهوم یا اصل کلی. تمثيل يا آوردن مثال به عنوان راهي بسيار مناسب براي ايجاد درک عميق و فهم کامل يک مطلب، مورد توجه دست اندرکاران علوم تربيتي است. در قرآن کريم نيز آن زمان که مطلبي آورده مي شود، با شاهد مثالي دقيق، پيام آيه و سوره نازل شده به بهترين شکل ممکن، آورده مي شود.
از اين نکته، معلمان و اساتيد و هر جايي که فرآيند ياددهي و يادگيري صورت ميپذيرد، استفاده ميشود و تأثير عميق خود را بر فراگير خواهد گذاشت. مثال آوردن مستلزم تشخیص ویژگیهای تعریف کننده مفهوم یا اصل کلی (مثلاً، یک مثلث متساوی الساقین باید دو ضلع مساوی داشته باشد.) و استفاده از این ویژگیها برای انتخاب یا ساختن یک مورد یا نمونه خاص است (مثلاً توانایی انتخاب اینکه کدام یک از سه مثلث نشان داده شده موردی از یک مثلث متساوی الساقین است.) اصطلاح دیگر برای مثال آوردن نمونه دادن است.
مثال:
آوردن مثال براي حل معادلههاي درجه دو يا اتحادهاي مزدوج
طبقهبندی کردن
نظاممند کردن و دستهبندي کردن مطالب و موارد معنايي است که از ترکيب ذکر شده، برميآيد. فرآيند طبقهبندي کردن، سبب تقديم و تقدم مطالب در ذهن گرديده و در بازآوري و يادآوري سريع آن، نقش به سزايي دارد. از اين رو در فهم درست و به قاعده دانش، کمک شاياني مينمايد.
تشخیص اینکه چیزی (یک مورد یا مثال خاص) به یک طبقه معین (یک مفهوم یا اصل) تعلق دارد.طبقهبندی کردن فرایند مکمل مثال آوردن است. در حالی که مثال آوردن از یک مفهوم یا اصلی شروع می شود و مستلزم این است که یادگیرنده یک مورد خاص برای آن بیابد، طبقه بندی کردن از یک مورد یا مثال خاص شروع می شود و مستلزم این است که یادگیرنده برای آن یک مفهوم یا اصلی کلی پیدا کند. اصطلاح دیگر برای طبقهبندی کردن مشمول کردن است.
مثال: تعیین طبقههایی که اعداد به آنها تعلق میگیرند.
يا تعيين جايگاه عناصر در جدول مندليف
خلاصه کردن
فهم آنچه از موضوعي و بيان آن در موجز ترين حالت در محدوده خلاصه کردن است. خلاصه کردن به معني سر و ته زدن نيست، بلکه بيان مطلب با رعايت چهارچوب پيام آن است. خلاصه کردن، استفاده از یک بیان مختصر که معرف یک توضیح مفصلتر است. دانشآموز برای خلاصه کردن مطالب مفصل باید آنها را در قالب مضمون اصلی یا نکات مهم مختصر کند. اصطلاح دیگر برای خلاصه کردن به صورت چکیده درآوردن است.
مثال:
یافتن بهترین عبارت که مفهوم یک بند را میرساند.
استنباط کردن
استنباط کردن، بههمراه سؤال کردن، فنى است که از طريق آن مىتوان، بر اساس آنچه بيان شده است، به نتيجهگيرىهاى منطقى دست زد. با مورد نظر قرار دادن مسائل ماوراى آنچه که مستقيماً بيان گرديده و کشف مطالبى که بهطور ضمنى به آنها اشاره شده است نظر وسيعترى براى درک مطالب ،کسب خواهيد کرد.
مطالب معمولاً با بيان داده جزئى و نکات اصلى ارائه ميگردد. ولي، معمولاً برعهدهي فراگير است که منظور اصلى يا انديشهي اساسى را استنباط کند. در فرآيند يادگيري، بر عهده فراگير است که مثلاً از راه مثالهاي بيان شده به قواعد و قوانين جاري در بطن آنها دست يابد و اين امر نيازمند درک عميق از موضوع بيان شده است. یافتن یک الگو در درون یک رشته مثال یا مورد. استنباط زمانی رخ میدهد که دانشآموز بتواند یک مفهوم یا اصل را از تعدادی مثال یا مورد- با توجه به روابط میان آنها- انتزاع کند. اصطلاح دیگر برای استنباط کردن درونیابی و برونیابی هستند.
مثال::
توانایی تشخیص الگوی حاکم بر اعداد زیر: 21،13،8،5،3،2،1،1
مقایسه کردن
مقابله کردن و در ترازو قرار دادن صفت يا صفاتي از مجموع ويژگيهاي دو پديده در حيطه مقايسه کردن معني مييابد. مثلاً اگر خواسته باشيم اثر بخشي دو دارو را که با هم در يک خانواده قرار دارند مورد ارزيابي قرار دهيم و ويژگيهاي آن دو را در بوته آزمايش و تقابل با يکديگر قرار دهيم، به مقايسه پرداختهايم. تشخیص شباهتها و تفاوتهای بین دو یا چند شیء رویداد، اندیشه، مسئله، یا موقعیت. مقایسه کردن شامل مقابله یک به یک بین عناصر و الگوهای موجود در پدیدههاست. اصطلاح دیگر برای مقایسه کردن مقابله کردن است.
مثال:
مقایسه قوانين اول و دوم نيوتن
مقايسه نحوه حل معادله دو مجهولي و يک مجهولي
تبیین کردن
هدف از تبيين کردن، روشن کردن و توضيح روابط بين دو موضوع است. در حقيقت تبييني کامل و جامع است که همة عوامل مربوط و دخيل در امر را شامل شود. توضيحي که در قالب آن بتوان به چوني و چرايي مطالب پي برد و از ميان آن به جايگاه و مکان هر پديده دست يافت.
در متون و مباحث فلسفی راجع به تبیین، انواعی برای آن برمیشمارند: تبیین علمی و تبیینِ عادی یا غیر علمی؛ تبیینِ ناقص یا جزئی و تبیینِ کامل یا تمام؛ تبیین خوب یا قوی و تبیین بد یا ضعیف؛ تبیین موضعی یا محلی و تبیین جهانمشمول؛ تبیین علّی و تبیین غیرعلّی؛ تبیین کارکردی؛ تبیین غایتشناختی و.... هیچ طبقهبندی عام و کاملاً پذیرفتهشدهای از انواع تبیین وجود ندارد. هر کس بسته به مقاصد خود انواعی را برای تبیین ذکر میکند و از هر نوع معنای خاصی را مراد میکند. مشکل اساسی نبود معیار و ضابطة طبقهبندی است. توانایی ساختن یک الگوی علت و معلولی از یک نظام و استفاده از آن. الگو ممکن است از یک نظریه علمی (مانند نظریه های علوم طبیعی) استخراج شود یا مبنای آن پژوهش یا تجربه باشد (مانند آن چه که غالباً در علوم اجتماعی و انسانی رخ می دهد). اصطلاح دیگر برای تبیین کردن ساختن یک الگو است.
مثال:
تبیین چگونگی کارکرد قوانین اساسی فیزیک
2-7-1-3- به کار بستن: شامل استفاده از روشها، روندها و قواعد مشخص شده براي انجام تمرينها يا حل کردن مسئلههاست. بنابراين به کار بستن بسيار وابسته به دانش روندي است. فراگير در اين جايگاه از تجربيات خويش بر پايه قاعده و نظام پيشين، براي رفع مسئله خويش بهره جسته و نياز خود را مرتفع ميسازد.
اصطلاح ديگر براي به کاربستن از مرحله طرح به عمل در آوردن است. مثال بارز استفاده از چهارعمل اصلي براي محاسبه درآمد و دخل و خرج خود و ديگران، یا شاگردی که میتواند اصول و قوانین مثلثات را در موقعیت علمی جدید ( مانند حل مسائل و نقشهبرداری ) به کار برد از نمونههاي اين فرآيند است.
به کار بستن شامل دو خرده طبقهی زیر است:
اجرا کردن
استفاده از یک روش برای انجام یک تکلیف آشنا. این همان انجام تمرین است. بنابراین ویژگی مهم این خرده طبقه آشنایی دانشآموز با تمرینهایی است که انجام میدهد. آندرسون در توضیح این خرده طبقه گفته است «اجرا کردن بیشتر به استفاده از مهارتها و الگوریتمها وابسته است تا تکنیکها و روشها. مهارتها و الگوریتمها دارای دو کیفیت هستند که آنها را وابسته به اجرا میسازد. اول اینکه، آنها از یک رشته مرحله تشکیل مییابند که ترتیب ثابتی دارند. دوم اینکه وقتی که مراحل به درستی طی شوند، نتیجه نهایی قابل پیشبینی است. اصطلاح دیگر برای اجرا کردن از مرحله طرح به عمل در آوردن است.))
مثال : تقسیم یک عدد صحیح بر عدد صحیح دیگر
انجام دادن (مورد استفاده قرار دادن)
انتخاب یک روش یا روند و استفاده از آن برای انجام یک تکلیف نا آشنا. برخلاف اجرا کردن که تمرین کردن است، خرده طبقه حاضر (انجام دادن) حل مسئله است. آندرسون درباره تفاوت بین این دو خرده طبقه بيان ميکند ((به کاربستن از دو فرایند شناختی تشکیل مییابد. اجرا کردن زمانی که تکلیف یک تمرین است. (آشناست) و انجام دادن زمانی که تکلیف یک مسئله است (نا آشناست)» اصطلاح دیگر برای انجام دادن مورد استفاده قرار دادن است.
مثال: حل کردن مسائل مالی شخصی گوناگون
2-7-1-4- تحليل کردن: مهارتهايی که به تحليل مربوط میشود، در سطحی نسبتاً بالاتر از مهارتهای مربوط به فهميدن و بکاربستن قرار دارند .در فهميدن، تاکيد بر درک معنی و هدف مفهوم است و در به کار بستن تأکيد بر به يادآوردن تعميمها و اصول مناسب و ربط دادن آنها به مفاهيم و مسايل جديد، در حلی که در تحليل برشکستن مطلب به اجزا تشکيل دهنده آن و يافتن روابط بين اجزا و نحوه سازمان يافتن آنها تاکيد میشود، به عبارت ديگر يادگيری در سطح تحليل متضمن داشتن توانايی تجزبه کردن يک موضوع به اجزا تشکيل دهنده آن و مشخص کردن ارتباط اجزاء با يکديگر و نيز درک نحوه سازمان يافتن عناصر يک کل و دريافت مبنا و فرضی است که در آن بکار رفته است .بنابراين يادگيری در اين سطح مستلزم گذشتن از مراحل دانش، فهميدن و بکار بستن است .بطور کلی در تحليل تجزيه يک موضوع به اجزای تشکيل دهنده آن بايد به گونهای باشد که سلسله مراتب انديشهها به صورتی روشن نشان داده شود و روابط ميان انديشههای بيان نشده مشخص گردند.
طبقه تحليل کردن يا تحليل شامل شکستن مواد به بخشهاي تشکيل دهنده و تعيين چگونگي روابط ميان اجزاء و ساخت کلي است. آندرسون، کراتول و همکاران در توضيح طبقه تحليل گفتهاند. «اگر چه يادگيري و تحليل کردن ميتواند به خودي خود يک هدف تلقي شود اما از لحاظ تربيتي قابل دفاع است که آن را مکمل فهميدن يا مقدمه ارزشيابي کردن يا آفريدن بدانيم.»(اندرسون، کراتول و همکاران، 2001، 216)
طبقات فرعی( خرده طبقات)طبقه تحليل :
الف)تحليل عناصر: شناسايی عناصر موجود در يک مطلب :
مثال : توانايی تشخيص واقعيت از فرضيه
ب) تحليل روابط: شناسايی روابط و تعاملهای بين عناصر و اجزای يک مطلب
مثال :توانايی تشخيص روابط علت و معلولی از ساير روابط
ج) تحليل اصول سازمانی: شناسايی سازمان و آرايش نظامدار يک مطلب که هم ساختار آشکار و هم ساختار نهان آن را شامل میشود.
مثال : توانايی شناختن فنون کلی مورد استفاده در مطالب ترغيب کننده مانند تبليغاتها
مهارتهایی که به تحلیل مربوط میشوند، در سطحی نسبتاً بالاتر از مهارتهای مربوط به فهمیدن و به کار بستن قرار دارند. در فهمیدن، تاکید بر درک معنی و مفهوم است و در به کار بستن، تاکید بر به یادآوردن تعمیمها و اصول مناسب و ربط دادن آن ها به مفاهیم و مسائل جدید. در حالی که در تحلیل، بر شکستن مطلب به اجزای تشکیل دهندهی آن و یافتن روابط بین اجزا و نحوهی سازمان یافتن آن ها تأکید میشود؛ به عبارت دیگر، یادگیری در سطح تحلیل متضمن داشتن توانایی تجزیه کردن یک موضوع به اجزای تشکیلدهندهی آن و مشخص کردن ارتباط اجزا با یکدیگر و نیز درک نحوهی سازمان یافتن عناصر یک کل و دریافت مبنا و فرضی است که در آن به کار رفته است. بنابراین، یادگیری در این سطح مستلزم گذشتن از مراحل شناخت، فهمیدن و به کار بستن است. تحلیل را بهعنوان یک هدف آموزشی میتوان به سه سطح جزئیتر تقسیم کرد. در سطح اول، از فراگیرنده انتظار میرود موضوع را به اجزای تشکیلدهندهی آن تجزیه کند تا عناصر مورد تحلیل را شناسایی یا دستهبندی کند. در سطح دوم، از فراگیرنده خواسته میشود روابط میان عناصر را مشخص کند تا پیوندها و کنشهای متقابل آن ها تعیین شود. سطح سوم شامل شناخت اصول سازمانی، یعنی آرایش و ساخت موضوع است که آن را به صورت یک کل یکپارچه به هم پیوند میدهد. مثلاً شاگردی که بتواند در کلاس درس ادبیات فارسی، یک جملهی ادبی را از نظر دستوری تجزیه و نقش و روابط کلمات تشکیلدهندهی آن را مشخص کند، از نظر یادگیری در سطح تحلیل قرار دارد. (پين، 2003، 117)
طبقه تحلیل کردن از سه خرده طبقه زیر تشکیل یافته است:
متمایز کردن
جدا کردن اجزاء از یک ساخت کلی برحسب ربط با اهمیت آنها. متمایزکردن یا ویژهسازی کردن وقتی رخ میدهد که دانشآموز داده مربوط از نامربوط یا مهم از غیر مهم را تشخیص میدهد و سپس به داده مربوط یا مهم توجه میکند. «به عنوان مثال، در متمایز کردن سیب از پرتقال به عنوان میوه، دانههای درون آنها مربوط اما شکل و رنگ نامربوطاند. در مقایسه کردن که یکی از خرده طبقهها فهمیدن است همه این جنبهها (یعنی دانه، رنگ، و شکل) مربوطاند» (آندرسون، کراتول، و همکاران) بنابراین متمایز کردن و مقایسه کردن دو فرایند شناختی متفاوت اند. اصطلاح دیگر برای متمایز کردن تمیز دادن است.
مثال :
متمایز ساختن اعداد مربوط و نامربوط در یک مسئله کلامی
سازمان دادن
تشخیص عناصر یک ارتباط و شناختن اینکه چگونه آن عناصر در ایجاد یک کل یکپارچه به هم پیوند مییابند. سازمان دادن معمولاً همراه با متمایز کردن اتفاق میافتد. ابتدا دانشآموز عناصر مربوط یا مهم را تشخیص میدهد و بعد ساختار کل را که در آن عناصر به هم پیوند میخورند را تعیین میکند.همچنین سازمان دادن میتواند با نسبت دادن (خرده طبقه بعدی)، که در آن تأکید بر تعیین قصد یا دیدگاه نویسنده مطلب است رخ دهد. اصطلاح دیگر برای سازمان دادن تعیین ساختار است.
مثال:
سازمان دادن شواهد موجود در یک توصیف تاریخی به شواهد لازم برای له و علیه یک تبیین تاریخی خاص
نسبت دادن
مشخص کردن دیدگاه، سوگیریها، ارزشها، یا قصدهای زیربنایی ارتباطها یا اثرها. نسبت دادن یا واسازی مستلزم یک فرایند ساختارشکنی است که در آن دانشآموز قصدهای نویسنده را از ارائه مطالب تعیین میکند. آندرسون، کراتول و همکاران، در توضیح این خرده طبقه میگویند.«در مقایسه با تفسیر کردن که در آن دانشآموز میکوشد تا معنی مطالب ارائه شده را بفهمد، نسبت دادن فراتر از فهمیدن است، زیرا در آن دانشآموز میکوشد تا قصد یا دیدگاه نویسنده را که زیر بنای مطلب ارائه شده است استنباط کند» اصطلاح دیگر برای نسبت دادن ساختار شکنی است.
مثال:
تعیین دیدگاه یک مقاله درباره یک موضوع بحث انگیز برحسب چشم اندازه نظری او
2-7-1-5- ارزشيابي: اگر سعي بر آن باشد که فرآيندي را بر اساس ملاکهايي استاندارد و معيارهاي مشخص بسنجيم، به ارزشيابي دست زدهايم. ارزشيابي عبارت است از داوری و قضاوت درباره ارزش اندیشهها، کارها، راه حلها، روشها، مواد و غیره... در واقع ارزشـیابی نتیــجه جریان شناخت است. معيارها يا ملاکهاي مورد استفاده در ارزشيابي غالباً کيفيت، اثربخشي، کارآمدي و همساني را شامل ميشوند. ارزشيابي در نهايت منجر به کنترل کيفيت آموزش ميگردد و معلم را از ميزان و نحوه فرآيند ياددهي و يادگيري آگاه ميسازد. ارزشيابي بر اين پايه بايد شامل خصوصيّتهاي: دقت، مداومت، واضح بودن ارکان ارزشيابي و کاربردي بودن، باشد.
طبقه ارزشیابی از دو خرده طبقه زیر تشکیل یافته است:
وارسی کردن
آزمون همخوانیها و ناهمخوانیهای یک اثر یا محصول، برای مثال وقتی که دانشآموز میکوشد تا تعیین کند که آیا شواهد از یک فرضیه دفاع میکنند یا یک مطلب از بخشهایی تشکیل یافته که همدیگر را نقض میکنند. فعالیّت او در این خرده طبقه جای میگیرد. اصطلاح دیگر برای وارسی کردن آزمون است.
مثال:
تعیین اینکه نتیجهگیریها به طور منطقی حاصل داده گزارش هستند(ميگر،1355، 79).
نقد کردن
داوری کردن درباره یک عمل یا محصول بر اساس معیارها یا استانداردهای بیرونی. در نقد کردن، دانشآموز متوجه جنبههای مثبت و منفی یک محصول میشود و بر اساس آنها درباره آن محصول داوری میکند. نقدکردن هسته اصلی تفکر انتقادی را میسازد اصطلاح دیگر برای نقد کردن داوری کردن است.
مثال:
ارزشیابی کردن یک راه حل پیشنهادی (مثلاً حل معادله دو مجهولي با استفاده از عددهاي اول تواندار)
2-7-1-6- آفريدن (خلق کردن): با حد نهايت آموزش و هدف غايي از اين امر، در آفريدن خلاصه ميگردد. بر اين مبنا آفريدن يا آفرينندگي عبارت است از کنار هم گذاشتن عناصر و پديد آوردن يک کل منسجم يا کارکردي، هدفهايي که در طبقه آفريدن قرار دارند از دانشآموز ميخواهند تا از راه ترکيب کردن يا درهم آميختن عناصر و اجزاء به طور ذهني و ايجاد يک الگو يا ساختي که قبلاً وجود نداشته، يک محصول جديد بسازد. از اين کار از راه هماهنگي با دانشها و تجارب قبلاً آموخته شده دانشآموز انجام ميگيرد. طبقه آفریدن از سه خرده طبقه زیر تشکیل یافته است.
تولید کردن
استفاده از تمرکز واگرا در برخورد با مسائل. بنا به گفته آندرسون در اینجا تولید کردن به یک معنی محدود به کار میرود. فهمیدن نیز مستلزم فرایندهای تولیدی است، اما هدف فهمیدن غالباً همگرا (یعنی رسیدن به یک معنی واحد) است. در حالی که هدف تولید کردن در طبقه آفریدن واگرا (یعنی رسیدن به امکانات مختلف) است. اصطلاح دیگر برای تولید کردن فرضیه ساختن است.
مثال:
تولید روشهای متفاوت برای رسیدن به یک نتیجه خاص (در ریاضیات) (همان، 81)
طرحریزی
ایجاد طرح و نقشه برای انجام کارها، مثلاً ابداع یک روش برای حل یک مسئله. طرح ریزی شامل اجرای مراحل ضروری برای حل کردن یک مسئله نیست؛ این کار در خرده طبقه بعدی (پدید آوردن) ملحوظ شده است. اصطلاح دیگر برای طرحریزی طراحی است.
مثال:
طرحریزی پژوهشی برای آزمون فرضیه
پدید آوردن
اجرای یک نقشه برای حل مسئلهای با ویژگیهای خاص، اصطلاح دیگر برای پدید آوردن ساختن است.
مثال:
ساختن محیط زیست برای جانداران معیّن و با هدفهای معیّن.
2-7-2- بعد دانش: درطبقهبندي حوزه شناختي يک بعد دانش و يک بعد فرايند شناختي وجود دارد و بعد دانش شامل: دانش امور واقعي، دانش مفهومي، دانش روندي و دانش فراشناختي است.
داده كه به آن دانش بياني هم ميگويند نوعي از دانش است كه جزئيات و عقايد سازمان دهنده يك موضوع را در بر ميگيرد. جزئيات يك علم شامل واژگان، واقعيّتها و تسلسلهاي زماني آن علم است. واژگان در پايينترين سطح اين نوع دانش قرار ميگيرند. پس از آن واقعيات هستند كه داده مربوط به اشخاص، مكانها، تاريخها، و رويدادها را شامل ميشوند. تسلسلهاي زماني رويدادها و اتفاقاتي هستند كه در يك محدودة زماني و با ترتيب مشخص به وقوع پيوستهاند. وقتي هدف آموزش حفظ مطالب آموزش داده شده به همان صورت اوليه از سوي دانشآموز است، اين فرايند به يادآوردن (يادآوري) نام دارد. يادآوري مستلزم يافت داده از حافظه دراز مدت است(عبدالله پور، 1384، شماره16، 11).
ابعاد اين بعد شامل:
الف) اطلاعات: اطلاعات كه به آن دانش بياني هم ميگويند نوعي از دانش است كه جزئيات و عقايد سازمان دهنده يك موضوع را در بر ميگيرد. جزئيات يك علم شامل واژگان، واقعيتها و تسلسلهاي زماني آن علم است. واژگان در پايينترين سطح اين نوع دانش قرار ميگيرند. پس از آن واقعيات هستند كه داده مربوط به اشخاص، مكانها، تاريخها و رويدادها را شامل ميشوند. تسلسلهاي زماني رويدادها و اتفاقاتي هستند كه در يك محدودة زماني و با ترتيب مشخص به وقوع پيوستهاند.
عقايد سازماندهنده، شامل تعميمها و اصولي هستند كه مفاهيم كليتري را نسبت به جزئيات در برميگيرند. مثلاً يك واقعيت به شخص يا مكان خاصي اشاره دارد در حالي كه يك تعميم به طبقات اشخاص و مكانها ميپردازد. بنابراين تعميمها و اصول وابسته به مكان، زمان و شخص خاصي نيستند و ميتوانند در ساير مكانها، زمانها و اشخاص نيز استفاده شوند.
ب) روندهاي ذهني: روندهاي ذهني كه گاهي اوقات به آنها دانش روندي هم ميگويند از نظر شكلي و كاركردي با داده يا دانش بياني متفاوتاند. دانش روندي، " در برگيرنده دانش چگونه انجام دادن كارهاست. در مقابل دانش مفهومي و دانش امور واقعي [داده يا دانش بياني] كه معرف چه چيزي بودن امورند. به سخن ديگر دانش روندي نشاندهنده دانش فرايندهاي مختلف است اما دانش امور واقعي و دانش مفهومي با فراورده سر و كار دارند" (سيف، 1384 ص 62).
حيطهي روندهاي ذهني خود شامل دو طبقه است: مهارتها و فرايندها. مهارتها آن دسته از روندهاي ذهني هستند كه ميتوانند بطور خودكار يا با حداقل هوشياري اجرا شوند مانند استفاده از قواعد، اجراي مراحل حل يك مسئله يا استفاده از فنون و تاكتيكها. اما اجراي يك فرايند نيازمند كنترل است. مانند نوشتن يك متن صحيح مانند يك انشا، مقاله يا داستان كه به كنترل و هوشياري بالايي نيازمند است.
ج) روندهاي رواني ـ حركتي: در طبقهبندي بلوم و همكاران (1368) هدفهاي حيطة رواني ـ حركتي از حيطة شناختي جدا شدهاند. اما در طبقهبندي مارزانو و كندال (2007) هدفهاي رواني ـ حركتي به دو دليل يكي از انواع دانش در نظر گرفته شدهاند: نخست به اين دليل كه روندهاي رواني ـ حركتي به همان سبك روندهاي ذهني در حافظه ذخيره ميشوند و دوم اينكه مراحل اكتساب روندهاي رواني ـ حركتي با اكتساب ساير دانشها مشابه است. روندهاي رواني ـ حركتي هم به دو طبقة مهارتها و فرايندها تقسيم ميشوند. طبقه مهارتها روندهاي حركتي پايه و حركات تركيبي ساده را شامل ميشوند و فرايندها مربوط به حركات تركيبي پيچيده هستند.
بعد دانش شامل چهار طبقه است: .(اندرسون، کراتول و همکاران، 2001، 89)
1- دانش امور واقعی: صرف نظر از تخيلات و داده انتزاعي فراگير، اين نوع دانش، مربوط به اموري است که فراگير در زندگي عادي و روزمره خويش با آن برخورد داشته و به صورت عيني و قابل دسترس در دنياي پيرامون او وجود دارد. امور واقعي در آموزش نقش کليدي در جريان آموزش ايفا ميکند و پايه و اساس ديگر عملکردهاي ذهن و درون اوست. به همين دليل بسيار حياتي است که فراگير در درک عميق آن موفق بوده باشد.
2- دانش مفهومی: در این سطح دانش آموز تنها به دانستن واقعیتها اکتفا نمیکند بلکه انتزاعیتر فکر میکند. بنابراین به تنظیم واقعیتها در ذهن خود و درک رابطهی میان علت و معلول نیازمند است. بدیهی است که فهمیدن مطالب با ارزشتر از حفظ کردن آنها بوده و در سلسله مراتب یادگیری، سطح بالاتری را به خود اختصاص میدهد.
3- دانش روندی: فراگير در کسب مهارتهاي خود، از الگويي استفاده ميکند که در اين دانش ميگنجد. وي ابتدا مطالب را در ذهن سازماندهي ميکند و به تدريج در فرآيند يادگيري با طبقهبندي علم خويش، به مهارت دست مييابد. اين پيشرفت تا حدي پيش ميرود که دست يافتن به عملکرد مناسب، با سرعت زيادي صورت ميپذيرد و فراگير در مراحل بالاتر، نيازي به يادآوري مجدد ندارد و گويي به طور اتوماتيک به اين کار دست ميزند. البته بايد توجه داشت که دستيابي به اين سطح از طريق دانش پايهاي و پيشين صورت ميگيرد که در تقسيمبنديها بدان دانش بياني گفته ميشود. دانشي که در ابتدا تنها بيان چيستي است و در موضوع و حوزه به مقدار زيادي متنوع است. در مراحل اوليه يادگيري دانش روندي، فرد به دانش بياني بيشتري نياز دارد. مثلاً براي يادگرفتن تايپ کردن، ابتدا فرد بايد ترتيب دکمهها و نحوه عمل کردن آن را به صورت دانش بياني بداند و در مراحل کار از آنها استفاده کند. به موازات اينکه دانش روندي وي به سمت عادت پيش ميرود، استفاده از دانش بياني کمتر ميشود.
دانش بياني به صورت شبکهاي از قضايا و دانش روندي به صورت محصولات ذخيره ميشوند. دانش روندي به صورت اگر... سپس ذخيره ميشوند. دانش بياني زمينهساز توليد دانش بياني جديد و دانش روندي زمينه ساز کاربرد داده است( بلوم و همکاران، 1346، 117).
نتيجه دانش روندي انتقال دانش است. دانش بياني سريعتر بازيابي ميشود. به طوريکه اگر شخصي در موضوعي به مهارت رسيده باشد، معمولاً آن را بدون تفکر انجام ميدهد. چيزي که در طبقهبندي دانش در حيطه رواني حرکتي به آن عادت ميگوييم.
برخي تفاوتهاي دانش بياني و دانش روندي:
1- دانش بياني دانستن چيستي است، در حاليکه دانش روندي دانش چگونگي است.
2- دانش بياني در موضوع و حوزه به مقدار زيادي متنوع است.
3- دانش روندي نسبت به دانش بياني پوياتر است. نتيجه دانش روندي انتقال دانش است، در حاليکه نتيجه دانش بياني به يادآوري داده و دانش است. هم چنين نتيجه دانش روندي، دانش جديد و محصول جديد است.
4- در مقايسه با سرعت بازيابي، دانش روندي اگر خوب آموخته شده باشد، در مقايسه با دانش بياني سريعتر بازيابي ميشود. به طوريکه اگر شخصي در موضوعي به مهارت رسيده باشد، معمولاً آن را بدون تفکر انجام ميدهد. چيزي که در طبقهبندي دانش در حيطه رواني حرکتي به آن عادت ميگوييم. در حاليکه به يادآوري دانش بياني کندتر و نيازمند آگاهي است.
4- دانش فراشناختی : فراشناخت یکی از تازهترین شعارهای روز در روانشناسی و تعلیم وتربیت است. اگر چه بیش از دو دهه از حضور فراشناخت در فرهنگ واژگان روانشناسی نمیگذرد اما شواهد گسترده، حاکی از جایگاه ویژهی آن نزد محققان و صاحب نظران بینالمللی است . در روانشناسی واژهای است که به صورت «شناختنِ شناختن» و یا « دانستنِ دانستن» تعریف شده است. تأملی که انسان بر روی فرایندهای ذهنی خود میکند و اندیشیدن درباره تفکر را فراشناخت مینامند. این مفهوم از مفاهیم نظریه ذهن به شمار میآید، که به صورت عمومی دارای دو مؤلفه است: یکی دانش درباره شناخت، و دیگری قاعده بخشیدن به شناخت. کودک انسان تا پیش از دبستان هنوز مجهز به فراشناخت نیست و توانایی درکِ نظر و افکار و احساسات دیگران را ندارد، از چهار سالگی به بعد است که میفهمد که افکار و باورهای دیگران بر رفتارشان تاثیر میگذارد و اینکه حتی ممکن است آنها از واقعیت به دور نیز باشد. بیماران مبتلا به اوتیسم فاقد نظریه ذهن میباشند، آدمها را به مانند هر نوع شی دیگری میبینند، در نتیجه به دنیای درون خود پناه میبرند فراشناخت را میتوان به سه حیطه دانش فراشناختی، تجربههای فراشناختی و راهبردهای فراشناختی تقسیم کرد. دانش فراشناختی به باورها و نظریههایی اطلاق میشود که افراد درباره تفکر خود دارند. تجربههای فراشناختی شامل ارزیابیها و احساسهایی است که افراد در موقعیتهای مختلف دربارهی وضعیت روانی خود دارند و راهبردهای فراشناختی پاسخهایی هستند که برای کنترل و تغییر تفکر به کار گرفته میشوند و به خود تنظیمی هیجانی و شناختی کمک میکنند.(اندرسون، کراتول و همکاران، 2001، 108)
به عبارت دیگر، دانش فراشناختی به دانش کسب شده در مورد فرآیندهای شناختی – دانشی که میتواند برای کنترل فرآیندهای شناختی مورد استفاده قرار گیرد- اطلاق میشود. دانش فراشناختی قابل بیان کردن است و نسبتاً ثابت است به گونهای که امکان اندیشیدن در مورد فرآیندهای شناختی و بحث با دیگران را فراهم میکند، اما ممکن است اشتباهپذیر، غیر واقعی یا مبتنی بر الگوهای ساده لوحانه باشد.
یافتههای پژوهشی وسیعی درباره نقش فرا شناخت در زمینههایی نظیر حل مسأله، خواندن، نگارش، یادگیری و... حکایت از آن دارد که نظام فعلی آموزش و پرورش را باید در جهت تأکید بر فراشناخت حرکت داد. اگر آموزش و پرورش به دنبال تربیت دانشآموزانی است که بتوانند از عهدهی حل مسایل مختلف جامعهی متحول فردا برآیند و مسئولیئت یادگیری خویش را برعهده گیرند باید فراشناخت را در برنامههای خود وارد کنند و به گسترش مهارتهای فراشناختی بپردازند. زیرا مهارتهای فراشناختی به افراد کمک میکند تا خودشان را با موقعیتهای جدید سازگار کنند. بسیاری از صاحبنظران بر این عقیده هستند که هرگونه اصلاح در نظام تربیتی، مستلزم در نظر گرفتن یافتههای پژوهشهای فراشناختی و استفاده از آنها در برنامههای آموزشی است .
دانش فراشناختی شامل مقولههای زیر است:
1ـ آگاهی فرد از دانستههای خود در زمینه ریاضی
اولین جنبه از دانش فراشناختی، به داوریهای فرد درباره ظرفیتهای ذهنی و رفتار خود مربوط میشود. به عنوان مثال آگاهی وي از:
الف) مقدار اطلاعاتي که میتواند بدون خطا به خاطر بسپارد.
ب) چگونه موضوع درسی ریاضی که تدریس شده است را به خوبی میفهمد.
ج) انواع محاسبات ذهنی که میتواند انجام دهد.
د) تواناییهای فرد برای فهمیدن و به کارگیری مفاهیم ریاضی.
2ـ استفاده درست فرد از منابع دانشی خویش(خود نظمی)
جنبه دوم فراشناخت، خودنظمی است که به توانایی فرد برای بازبینی، ارزیابی و (اگر لازم باشد)، اصلاح رفتار خود در حین انجام تکالیف پیچیده، نظیر حل مسأله ریاضی مربوط میشود. پژوهشها نشان دادهاند که عملکرد خود نظمی فرد خبره در زمينه حل مسأله، خیلی بهتر از تازه کارهاست. عملکرد آنان در محدود کردن کاوشهای نامناسب یا ترک راه حلهای محال بهتر است و راه حلهای امیدوار کننده و مناسب مسأله را پیگیری میکنند.
3ـ باورهای فرد درباره خود، دربارۀ ریاضی و دربارۀ حل مسأله ریاضی
جنبه سوم دانش فراشناخت، مجموعهای از باورها است که افراد درباره خودشان، ریاضیات و ماهیت تفکر ریاضی دارند. برای مثال، بسیاری از دانشآموزان معتقدند که اندیشهها و فرمولهای ریاضی که به وسیله متخصصان از بالا منتقل میشوند ( مثلاً از طریق معلمان) را باید به خاطر بسپارند، در نتیجه انتظار دارند فرمولهای آمادهای برای موقعیتهایی که مطالعه کردهاند، در اختیار داشته باشند و ممکن است در صورتی که فرمولها را فراموش کرده باشند، به سادگی تسلیم شوند یا ممکن است نتوانند از عهده تحلیل موقعیتهایی که قادر به فهمیدن آنها بودهاند و سعی کردهاند آنها را تحلیل کنند برایند. به عنوان مثال برخی از باورهای دانشآموزان در مورد ریاضی و حل مسائل ریاضی به شرح زیر است:
- ریاضیات رسمی، ارتباط خیلی کمی با حل مسألههای دنیایی که در آن زندگی میکنیم، دارد.
- مسائل ریاضی معمولاً در ده دقیقه یا کمتر حل میشوند( اگر دانشآموزان نتوانند مسألهای را در کمتر از 10 دقیقه حل کنند، معمولاً از آن صرف نظر میکنند.)
- فقط نابغهها (دانشآموزان زرنگ) توانایی یادگیری، کشف، خلق و یا حل مسائل ریاضی را دارند.
به گفته گویا (1992)، آموزش ریاضی و حل مسألههای ریاضی مبتنی بر فراشناخت، از 4 تکنیک متفاوت اما مرتبط با هم استفاده میکند که بر فراشناخت متمرکز شدهاند. این تکنیکها عبارتند از:
1- کار در گروههای کوچک
کار در گروههای کوچک، یکی از مؤلفههای اصلی آموزش و حل مسأله میباشد. دانشآموزان ضمن کار در گروههای کوچک، یاد میگیرند تا برکارهای خود نظارت داشته باشند و ارزیابی درستی از آنها کنند. در زمانی که دانشآموزان در گروههای کوچک مشغول فعالیت حل مسأله هستند، معلم باید اطمینان حاصل کند که تک تک آنها، درگیر فعالیت ریاضی شدهاند و هرکس، مسئولیت خود را میشناسد و به آن عمل میکند. قرار دادن کودکان در گروههای سه یا چهار نفری برای کار روی یک مسأله، یک استراتژی بسیار مفید برای تشویق و حمایت از بحثها و تعامل پیشبینی شده در یک جمع ریاضی است. کلاسی که به صورت گروههای کوچک تنظیم شده است، زمان خیلی بیشتری برای تعامل و بحث ایجاد میکند تا کلاسی که در آن همه دانشآموزان به طور منفرد یک کل را تشکیل میدهند. در گروههای کوچک، کودکان اجازه و قدرت بیشتری برای صحبت کردن، کشف ایدهها، توضیح چیزهایی به گروه خود، پرسیدن و یادگرفتن از همدیگر، استدلال کردن و داشتن ایدههای شخصی که در فضایی دوستانه به چالش میافتند، خواهند داشت.
2 - بحث همگانی در کلاس
بحث همگانی در کلاس موجب میشود تا دانشآموزان با معلم و همکلاسیهای خود به بحث و گفتگو بپردازند که خود عامل مهمی برای تقویت یادگیری معنادار مفاهیم ریاضی و حل مسائل ریاضی، توسط آنان خواهد بود. همچنین بحث کلاسی باعث میشود تا دانشآموزان تشویق شوند تا فقط به قدرت خارجی یعنی معلم خود اتکا نکنند تا همیشه او به آنان بگوید چه بکنند و چه نکنند، بلکه خود به خلق و انجام فعالیتهای ریاضی، حل مسائل و ... بپردازند. ملزم کردن دانشآموزان به اینکه توضیح دهند چرا، بگویند چگونه و جزئیات ایدههای خود را شرح دهند، باعث میشود تا بدانند که ریاضی، اسرارآمیز یا غیر قابل فهم نیست. دیگر نیازی نیست که معلم، منبع حقایق ریاضی باشد.
3 - نوشتن بازتابی(ژورنال نویسی)
گروهها میتوانند بر نتایج داده بدست آمده در هنگام حل مسائل ریاضی، بازتاب داشته و آنها را بنویسند. تقریباً نوشتن میتواند بخشی از هر مسأله طرح شده باشد. نه تنها نوشتن به دانشآموزان کمک میکند تا فکرهای خود را منسجم کنند، بلکه نوشتن موجب میشود که هر دانشآموز متعهد شود یک ایده را برای بحثهای کلاسی، توضیح دهد یا از آن دفاع کند. مثلاً دانشآموزان یک گروه میتوانند در مورد اینکه چگونه کشیدن شکل در ارائه راه حل، مفید واقع شد، یا اینکه چگونه استراتژی حدس و آزمایش را مورد استفاده قرار دادند، با دیگر دوستان خود در گروههای دیگر صحبت کرده و از نظرات آنها آگاه شوند.
4 - معلم به عنوان ایفا کننده یک نقش الگویی برای رفتار فراشناختی
در این تکنیک، معلم هنگام روبرو شدن با مسایل ریاضی در کلاس، سعی میکند رفتاری فراشناختی از خود بروز دهد تا دانشآموزان با این رفتار آشنا شده و بتوانند بعداً خود نیز چنین رفتاری داشته باشند. در این تکنیک، گویی معلم اولین بار است که با مسأله برخورد میکند. یکی از محاسن این روش این است که دانشآموز رفتار حل مسأله مناسبی را که باید به آن عادت کند، میبیند.(گويا، 1377، 49)
آزمون تیمز(TIMSS)
آزمونهای تیمز و پرلز، چند هدف عمده دارند که از آن جمله عبارت است از سنجش پیشرفت ریاضیات و علوم در پایه چهارم ابتدایی و سوم راهنمایی تحصیلی و مطالعه سواد خواندن (درک مطلب ) که توسط انجمن بینالمللی ارزشیابی پیشرفت تحصیلی در سطح دنیا برگزار میشود.
هدف از انجام اين مطالعات در حوزه هاي ارزشيابي پيشرفت تحصيلي، شناسايي و کشف نقاط ضعف و قوت نظامهاي آموزشي و تلاش براي ارتقاي کيفيت عملکرد تحصيلي دانشآموزان است.
این آزمونها، به نوعی محک ارزیابی نظامهای آموزشی در کشورها و میزان موفقیت نظام آموزش و عملکرد آن است. بسیاری از دولتها، رتبهی کشور خود را به ضعف و قوت برنامههای آموزشی خود، تعبیر میکنند. برخی کشورهای دنیا، مانند نروژ، نسبت به نتایج این دو آزمون آن قدر حساس هستند که نمرات پایینتر از حد استاندارد دانشآموزان آنها، به عزل وزیر آموزش این کشور منتهی میشود
سومین مطالعه بینالمللی ریاضیات و علوم(TIMSS) در سال تحصیلی 1374ـ1373 توسط انجمن بینالمللی ارزشیابی پیشرفت تحصیلی با هدف اندازهگیری پیشرفت تحصیلی دانشآموزان شرکت کننده در دو درس ریاضی و علوم و همچنین تاثیر عوامل مؤثر در این پیشرفت از جمله برنامه و مواد آموزشی، مدرسه و خانواده به اجرا درآمد.
بررسیهای متخصصان آموزش ریاضی و معلمان ریاضی نشان داد که مهمترین علل پایین بودن عملکرد دانشآموزان ایرانی در آزمون تیمز را میتوان موارد زیر عنوان کرد:
1ـ تقابل بین آموزش شهودی و آموزش رسمی:
آموزش مفاهیم و موضوعات ریاضی در پایههای پائینتر بیشتر به صورت تجربی و شهودی میباشد اما در پایههای بالاتر به صورت انتزاعی(فرمولی) میباشد و بنابراین دانشآموزان در پایههای پائینتر یادگیریشان به صورت درکی و مفهومی میباشد ولی در پایههای بالاتر این گونه نیست.
2 ـ عدم توانایی فراشناختی در دانشآموزان:
دانشآموزان پایههای بالاتر چون نمیدانند مطالبی را که فرا گرفتهاند چه موقع به کار ببرند، دچار مشکل میشوند. در واقع انباشت حافظه از داده و عدم توانایی استفاده به موقع از آنها یعنی عدم توانایی فرا شناختی، یکی از موانع موفقیّت دانشآموزان ایرانی در آزمون تیمز، معرفی شده بود.
سخن پایانی
یکی از وظایف مهم معلم در کلاسهای ریاضی، انتخاب درست مسأله است، چرا که مسألههای مناسب(باز ـ پاسخ)، به دانشآموزان فرصت بروز و توسعه دانستههایشان را میدهد و اگر مسألهها درست انتخاب شوند، میتوانند نیروی محرکهای برای یادگیری ریاضیات باشند. در حل مسألههای باز ـ پاسخ، مسأله چندین پاسخ احتمالی خواهد داشت که میتوان آنها را به چندین روش به دست آورد و تمرکز نه بر روی پاسخ مسأله، بلکه بر شیوههای رسیدن به پاسخ است. حل مسأله واقعی، مستلزم مسألهای است که کمی فراتر از سطح مهارتهای دانشآموزان باشد به طوری که او به طور خود به خودی نداند که از کدام روش حل مسأله استفاده کند. مسأله باید برای دانشآموز غیر معمولی، چالش برانگیز و نا آشنا بوده و در عین حال، ناامید کننده نباشد.
انتخاب مسأله به طور هوشیارانه، قسمت بسیار مشکلی در آموزش ریاضی است. به گفته پولیا (1945) « اگر معلم، دانشآموز را با مسألهای که باید حل کند تنها بگذارد و به او کمک نکند، یا این کمک به اندازه لازم و کافی نباشد، ممکن است دانشآموز نتواند در حل مسأله پیشرفت کند در نتیجه، منفعل میشود. راهنماییهای معلم باید به اندازهای باشد که برای دانشآموز، سهم معقولی از کاری که باید انجام دهد، بر جای ماند. در فرایند حل مسأله، معلم میتواند با طرح سوالهایی از قبیل« چرا» ، « چگونه» و « به چه دلیل»، تواناییهای فراشناختی دانشآموزان را به گونهای ارتقاء دهد تا آنها، نسبت به ذخایر دانشی خود، آگاهی بیشتری پیدا کرده و بتوانند در موقع لزوم از آنها استفاده درست و کارا کنند، زیرا جواب دادن به این سوالها، نیاز به تعمق و تفکر دارد(گویا، 1379). بنابراین، انتخاب « مسأله مناسب» و « راهنماییهای درست معلم» میتوانند در کارایی حل مسأله، تأثیر مستقیمی داشته باشد. اما باید توجه داشت که این کار چندان آسان نیست و نیاز به زمان، تمرین، دلبستگی و پیروی از اصول اساسی دارد(پولیا، 1945).
پژوهشگران بسیاری، تحقیق در مورد حل مسأله ریاضی را مستلزم توجه دقیق به جنبههای فراشناختی دانشآموز دانسته و بدون این ویژگی، چنین مطالعهای را ناقص و ناکارآمد میدانند. طبق یافتههای لستر(1988)، « حل مسأله از طریق منابع دانشی و قواعد و فرمولهای ریاضی، بدون توجه به جنبههای عاطفی و فراشناختی حل مسأله، نامناسب و ناقص است». نقش فراشناخت در آموزش حل مسأله به طور عمومی و آموزش حل مسأله ریاضی به طور خاص، قابل توجه است. پژوهشگران بسیاری در عرصه حل مسأله ریاضی، با استفاده از ساختار فراشناخت، به تهیه و تدوین الگوهای مختلف تدریسی ـ آموزشی، پرداختهاند. لازم به ذکر است که رشد و توسعه انواع تکنیکهای فراشناختی و چگونگی ایجاد دانش فراشناختی در یادگیرندگان ریاضی، تنها با پشتوانههای بومی و جهانی، امکان پذیر است.
جدول شماره2-2 معرفي ابعاد طبقهبندي آندرسون
بعد دانشبعد فرایند شناختی1بهیادآوردن2فهمیدن3بهکاربستن4تحلیل کردن5ارزشیابی6آفریدنالف-دانش امور واقعیبه یادآوردن تعاریف متن کتاب درسیپیدا کردن تعاریف تابع از متن کتابحل دوباره مسائل کتابتعاريف تابع را بر حسب زوج و تک، نمودار، دستگاه مختصات و معادله بنویسد.تفاوت بین رابطه و تابع، وارون تابع را توضیح دهدب-دانش مفهومیمفهوم تابع را بیاد آورددانش آموز بتواند مفهوم تابع را با توجه به درک خود توضیح دهداز تعريف در مدلسازي مسائل به صورت تابع خطي استفاده کند.تعاريف تابع را به صورتهاي مختلف آن تحليل کند.تفاوت بين رابطه و تابع، وارون تابع و تابع وارون پذير را در مسائل مختلف تشخيص دهد.پ-دانش روندیانواع تعاريف تابع و تعريف تابع يک بر يک را به طور کامل بنويسيد.انواع تعاريف تابع و ويژگي هاي آنها را بتواند به راحتي انتقال دهد.در حل مسائل تابع، از تعاريف به خوبي استفاده کرده و آنها را به کارگيرد.در حل مسائل پيچيده و تابع به مهارت و تسلط کافي جهت تحليل برآيد.
پيشينه پژوهش
سابقه راهيابي آموزشهاي نوين بر اساس چندرسانهاي و الکترونيکي در ايران به بيش از يک دهه نميرسد. اين نوع آموزش اوّلين بار در دانشگاه تهران و در سال 1381 پيادهسازي گرديده و هم اکنون اکثر دانشگاهها و مراکز علمي مطرح کشور به اين روش به تدريس ميپردازند. اين در حالي است که اين نوع آموزش، مورد استقبال آحاد جامعه نبوده و فقدان زيرساختهاي مورد نياز از قبيل سختافزار و نرمافزار مناسب و کارآمد، بستر ارتباطي مورد نياز، مزيد بر علت گرديده تا اين روش از رونق خوبي برخوردار نباشد. البته نبايد فراموش کرد که مقاومت در تغيير شيوههاي مرسوم آموزش و بالاخص روشهاي سنتي و هم چنين مشکلات و مسائل مالي مختلف، راه را براي کارآمدي و کاربرد اين روشها ناهموارتر نموده است. مطلبي که اميد است با توجه به جايگاه ارزنده اين فنون، از سوي دولت و نهادهاي ذيربط مورد توجه قرار گرفته و به سمت تحولات سازنده، پيش رود.( عبادي، 1380، 21)
پژوهشهای زیادی در ایران و سایرکشورها در مورد تأثیر فنآوریهای جدید مانند آموزش الکترونیکی، استفاده از درسافزارها و نرمافزارهای آموزشی وهمچنین چند رسانهایها بر آموزش، یادگیری، پیشرفت تحصیلی، خلاقیت، انگیزش و... انجام شده است.
- در ایران
1- خليل غفاري(1390) در پژوهشی با عنوان "طراحي الگوي برنامة درسي فناوري اطلاعات و ارتباطات و تأثير آن بر عملكردشناختي، عاطفي و مهارتي دانش آموزان دورة متوسطة " نشان داد كه سطح مباني، مفاهيم و اصطلاحات، دانش، نگرش و مهارت دانشآموزاني كه با الگوي برنامهی درسي فاوا آموزش ديدهاند به طور معناداري از دانش آموزاني كه اين آموزش را دريافت نكردهاند بالاتر است.
2- صفاریان (1389) در پژوهشی تحت عنوان «مقایسه تأثیر آموزش به کمک نرمافزارهاي آموزشی و روش تدریس سنتی بر یادگیري درس ریاضی به این نتیجه رسید که عملکرد دانشآموزانی که به وسیله نرمافزار آموزشی، آموزش دیدهاند، درمقایسه با دانشآموزانی که به شیوه سنتی آموزش دیدهاند، در آزمون پیشرفت تحصیلی ریاضی به طور قابل ملاحظهاي بهتر بوده است.
3- فاطمه نصرت و همکاران(1388) در تحقیقی با عنوان " تأثير آموزش فعال فناورانهی فيزيك بر پيشرفت تحصيلي دانش آموزان دورة متوسطه” نشان دادند كه آموزش فيزيك با استفاده از روش فعال فناورانه نسبت به روشهاي سنتي در پيشرفت تحصيلي دانش آموزان تأثير بيشتر دارد.
4- سيده فاطمه بشيري و محمد عطاران (1386) پژوهشي را با موضوع بهرهگيري از نرم افزار كمك آموزشي فيزيك سوم دبيرستان و بررسي تأثير آن در پيشرفت تحصيلي و تعامل دانشآموزان در کلاس با هدف بررسي تفاوتهاي موجود، ميان آموزش به شيوه سنتي، با شيوه آموزش با بهرهگيري از رايانه، انجام دادهاند؛ و چنين نتيجهگيري كردهاند كه: بهرهگيري از رايانه در افزايش يادگيري دانشآموزان، افزايش تعامل آنان با يكديگر و تقويت روحيه انجام دادن كار گروهي در آنان تأثير معنيداري دارد.
5- یاوري (1385) در پژوهشی تحت عنوان "بررسی اثربخشی نرم افزار آموزشی" حساب یار" به این نتایج دست یافت « که به کارگیري نرمافزار کمک آموزشی طراحی شده در یادگیري شمارش، جمع و تفریق، در دانشآموزان دچار اختلال ویژه، در یادگیري ریاضیات تأثیر مثبت دارد.
6-شیخ زاده و مهرمحمدي (1384) با عنوان ساخت نرمافزار آموزشی ریاضی ابتدایی بر اساس رویکرد سازندهگرایی و سنجش میزان اثربخشی آن انجام گرفت. نتایج نشاندهندهي تأثیر آموزشهاي رایانهاي بر ارتقاي پیشرفت تحصیلی دانشآموزان نسبت به آموزشهاي معمول مدارس (آموزش به شیوه سنتی) بود.
-در خارج از کشور:
نيز پژوهشاتي مبتني بر استفاده از چند رسانهايها و نرمافزارهاي کمک آموزشي صورت پذيرفته است که پارهاي از اين پژوهشات عبارتند از:
1- الیوت (2010) در پژوهشی تحت عنوان چندرسانهای در مدارس، به تاثیر آموزش مبتنی بر وب- انیمیشن با یادگیری علوم، زبان، خواندن در دانشآموزان کلاس سوم و پنجم و هشتم دبیرستان پرداخت. دانش آموزان گروه آزمایش با استفاده از انیمیشن وگروه گواه به روش سنتی آموزش دیدند. یافتها حاکی از آن بود که عملکرد گروه آزمایشی بیش از حد متوسط و بهتر از عملکرد گروه گواه بود.
2- پژوهش والاس(2005) نشان ميدهد كه استفاده از فناوريهاي جديد در آموزش علوم تجربي مؤثر است؛ زیرا فناوري ميتواند با در نظر گرفتن تفاوتهاي فردي دانش آموزان به كمك معلم بيايد و تكاليفي متناسب با هر دانش آموز ارائه دهد
3-البالوشی و الخلیفه در سالهاي2002 و 2003 به يافتن تأثير کاربرد چندرسانهايها و نرمافزارهاي آموزشي در تدريس پرداختند، اين پژوهش روي 3 گروه 15 نفره انجام شد. گروه اول حاضر در اين آزمايش به روش تدريس سنتي يادگيري داشتند. گروه دوم در کنار روش تدريس سنتي، از چندرسانهاي آموزشي هم استفاده ميکردند و در گروه سوم، دانشآموزان فقط به کمک چندرسانهاي آموزشي ياد ميگرفتند. نتايج به دست آمـده از اين پژوهش که روي 45 دانشآموز انجام شد، تفاوت قابل توجهي را ميان گروه اول و گروه سوم نشان نداد. يعني گروه اول که تنها به روش سنتي ياد داشتند در مقايسه با گروهي که با نرمافزارهاي آموزشي آموزش ديده بودند، تفاوت چنداني در يادگيري نداشتند؛ اما نتايج گروه دوم که از هر دو شيوه تدريس يعني روش تدريس سنتي درکنار نرمافزارهاي آموزشي بهره جسته بودند، 40 درصد پيشرفت در يادگيري از خود نشان دادند، دانشآموزان در اين روش، مفاهيم درسي را به صورت معنيدار آموخته بودند و کارايي بهتري در حل مسائل داشتند(عطاران، 1382، 117).
4- ماير و مورنو در سال 1999، 1998 در مورد تاثير اصل چگونگي وجه حسي نشان داد ميانگين نمرات يادگيري دو گروه متوالي و همزمان در چهار آزمون پژوهشي حاکي از آن است که مطالب را در قالب انيميشن و صدا در کنار يکديگر دريافت کردهاند 80 درصد بيشتر از فراگيراني بوده است که انيميشن و متن را دريافت کردهاند. اگر چه پژوهشهاي فوق جزء اولين دسته از پژوهشهايي هستند که به تاثير و چگونگي وجه حسي در پيامهاي چندرسانهاي مبتني بر رايانه پي بردهاند، اما تاثير مشابهي را نيز موسوي و همکاران در سال 1995 در پيامهاي چندرسانهاي مبتني برکتاب بدست آوردهاند.
5- ویلسون و ماجستریک (1996) انجام شده اثر بخشی آموزشهایی که بر اساس رایانه هستند وبه صورت خود آموز و فعال شدن دانشآموز میباشند نسبت به روش آموزشهای معلم مدار در مدارس موفقتر است.
خلاصه پيشينههاي پژوهش
الف)در ایران
جدول شماره 2-3
رديفعنوانسالمحققنتيجه1طراحي الگوي برنامه درسي فاوا و تأثير آن بر عملکرد شناختي، عاطفي و مهارتي دانشآموزان دورهي متوسطه1390خليل غفاريسطح مباني، مفاهيم، دانش، نگرش و مهارت دانشآموزاني كه با الگوي برنامهی درسي فاوا آموزش ديدهاند به طور معناداري از دانش آموزاني كه اين آموزش را دريافت نكردهاند بالاتر است.2مقایسه تأثیر آموزش به کمک نرمافزارهاي آموزشی و روش تدریس سنتی بر یادگیري درس ریاضی1389صفاريانعملکرد دانشآموزانی که به وسیله نرمافزار آموزشی، آموزش دیدهاند، از دانشآموزانی که به شیوه سنتی آموزش دیدهاند، در آزمون ریاضی به طور قابل ملاحظهاي بهتر بوده است.3تأثير آموزش فعال فناورانهی فيزيك بر پيشرفت تحصيلي دانش آموزان دورة متوسطه1388فاطمه نصرت و همکارانآموزش فيزيك با استفاده از روش فعال فناورانه نسبت به روشهاي سنتي در پيشرفت تحصيلي دانش آموزان تأثير بيشتر دارد4بهرهگيري از نرمافزار كمك آموزشي فيزيك سوم دبيرستان و بررسي تأثير آن در پيشرفت تحصيلي و تعامل دانشآموزان در کلاس1386سيدهفاطمه بشيري و محمد عطارانبهرهگيري از رايانه در افزايش يادگيري دانشآموزان و تعامل و تقويت روحيه انجام دادن كار گروهي در آنان تأثير معنيداري دارد.5بررسی اثربخشی نرم افزار آموزشی" حساب یار"1385ياوريبه کارگیري نرمافزار کمک آموزشی طراحی شده در یادگیري مفاهيم رياضي دانشآموزان دچار اختلال ویژه، در یادگیري ریاضیات تأثیر مثبت دارد.6ساخت نرمافزار آموزشی ریاضی ابتدایی بر اساس رویکرد سازندهگرایی و سنجش میزان اثربخشی آن1384شیخزاده و مهرمحمدينتایج نشاندهندهي تأثیر آموزشهاي رایانهاي بر ارتقاي پیشرفت تحصیلی دانشآموزان نسبت به آموزشهاي معمول مدارس (آموزش به شیوه سنتی) بود.
ب)خارج از کشور
جدول شماره 2-4
رديفعنوانسالمحققنتيجه1تأثير چندرسانهای مبتنی بر وب- انیمیشن بر یادگیری علوم، زبان و خواندن در دانشآموزان 2010اليوتیافتهها حاکی از آن بود که عملکرد گروه آزمایشی بیش از حد متوسط و بهتر از عملکرد گروه گواه بود.2استفاده از فناوريهاي جديد در آموزش علوم تجربي2005والاساستفاده از فناوريهاي جديد در آموزش علوم تجربي مؤثر است.3يافتن تأثير کاربرد چندرسانهايها و نرمافزارهاي آموزشي در تدريس20022003البالوشیو الخلیفهتأثير نرمافزارهاي آموزشي به همراه روش تدريس سنتي ،40 درصد پيشرفت در يادگيري ايجاد کرد.4تاثير اصل چگونگي وجه حسي1999ماير و مورنوميانگين نمرات يادگيري دو گروه متوالي و همزمان در چهار آزمون پژوهشي که مطالب را در قالب انيميشن و صدا در کنار يکديگر دريافت کردهاند 80 درصد بيشتر از کساني بوده است که انيميشن و متن را دريافت کردهاند.5اثر بخشی آموزشهایی که بر اساس رایانه هستند1996ویلسون و ماجستریکروش خودآموز و فعال بودن دانشآموز نسبت به روش آموزشهای معلم مدار در مدارس موفقتر است.
فهرست منابع و مأخذ:
منابع فارسي
- آزاد عبداللهپور، محمد(1384). رابطه بین سبکهای شناختی و فراشناختی با پیشرفت تحصیلی.
فصلنامه پژوهشهای روان شناختی. شماره (16). تهران.
- اسکندري، حسين(1388). استانداردهاي درسافزارهاي يادگيري الکترونيک، تهران، دفتر توسعه فناوري اطلاعات وزارت آموزش و پرورش.
- بلوم، بنيامين و همکاران(1355). راهنماي ارزشيابي تکويني و ارزشيابي مجموعي از آموختههاي دانشآموزان، ترجمهي ابراهيم کظيمي، تهران، انتشارات دانشگاه تربيت معلم.
- پارسا، محمد(1358). کاربرد روانشناسي در تدريس، چاپ پنجم، تهران، انتشارات پيوند.
- ربيع، عليرضا(1383). آموزش عالي در عصر مجازي، تبريز، دانشگاه بين المللي ايران.
- رشيدپور، ابراهيم (1356). ارتباط و تکنولوژي آموزشي، تهران، چاپ گهر.
- رشيدپور، ابراهيم (1355). آموزش سمعي و بصري، جلد دوم، چاپ سوم، تهران، چاپخانه آرمان.
- زارعي زواركي، اسماعيل(1387) طراحي مراكز يادگيري، تهران، رشد فرهنگ.
- سيف، علي اکبر.(1389) سنجش فرایند و فراورده یادگیری روشهای قدیم و جدید، تهران، نشر دوران.
- سيف، علي اکبر. (1390). روانشناسي پرورشي نوين، ويرايش ششم، تهران، دوران.
- سيف، علي اکبر. (1368). طبقهبندي هدفهاي پرورشي، تهران، انتشارات رشد.
- سيف، علي اکبر. (1381). روانشناسی پرورشی، روانشناسی یادگیری و آموزش، تهران، نشر آگاه، چاپ ششم.
- عبادی،رحيم(1380). آموزش و پرورش و آموزش الکترونيکي، تهران، مؤسسه دیباگران.
- عبادی،رحيم (1383). يادگيري الکترونيکي و آموزش و پرورش، (چاپ دوم)، تهران، آفتاب مهر.
- عطاران، محمد(1386). تحليل رويکردهاي نقادانه بر توسعه فناوري اطلاعات در آموزش و پرورش، مجموعه مقالات سومين همايش سالانه برنامه درسي، تهران، آييژ.
- عمادي، محمد(1378). اصول ساخت نرمافزارهاي چندرسانهاي، تهران، ديباگران.
- غراچه داغي، مهدی(1383). عوامل موثر در پیشبرد اهداف آموزش ریاضی، رشدآموزش ریاضی، شماره3.
- كي نژاد، حسين(1378). سيستمهاي چندرسانهاي به عنوان ابزار تكنولوژي آموزشي، دومين همايش بررسي و تحليل آموزشهاي علمي – كاربردي، تهران.
- گانيه، رابرت ام و ديگران(1374). اصول طراحي آموزشي،ترجمه خديجه عليآبادي، دانا، تهران.( تاريخ انتشار به زبان اصلي 1992).
- گویا، زهرا (1377). نقش فراشناخت در یادگیری حل مسأله ریاضی، مجله رشد آموزش ریاضی، شماره 53.
- محمدی، سليمان(1386). ارزشیابی سايت آموزشي شبكه رشد بر اساس ملا كهاي طراحي سايت هاي آموزشي، پایاننامه کارشناسی ارشد، تهران، دانشگاه علامه طباطبائی.
- ميگر، رابرت اف(1355). تدارک هدفهاي آموزشي، ترجمه بهرام زنگنه و محمد حسن شمشيري، دانشگاه آزاد ايران، تهران.
منابع انگليسي
- Anderson, L., & Krathwol, P.W. (Eds.) (2001) A Taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman:
- Chen .CH.M., & Hsu. SH.H,(2008), personalized mobile learning system for supportive effective English learning , Educational Technology & Society. Vol,11.NO,3
- Clements, M.A. & Ellerton, N. (1996) Mathematics education research: past, present and future. Bangkok: UNESCO
- Gagne, R.M. (1985). The conditions of learning and theory of instruction (4th ed.). New York: Holt, Rinehart & Winston
- Gagne, Robert M. (1987) Instructional Technology : Foundations . New Jersey: Lawrance Erlbaum
- Heinich , R.Molenda, M . Russell.D .james.(1993).Instuctional Multimedia and the Technologies of Education . New York: Macmillan Publishing Company.
- Mayer,R.E.(2001).Multimedia Learning.combridge university press.
Odyssey of the mind project. (2011). What’s Odyssey of the mind, http://www.odysseyofthemind.com.
- McKeachie, W.J ., & Kulik, G.A. (1975) Effective collage teaching. In F.N. kerlinger (Ed.), Reviwe of the research in education (Vol. 3) Washangton, DC: American Educational Research Association.
- Payne, D.A . (2003). Applied educational assessment(2nd ed.). US: Wads worth.
- Pólya, G. (1945). How to Solve it. Princeton : Princeton University Press.
- Woolfolk, A.E. (2004). Educational psychology (5 th, 6 th). Boston: Allyn and bacon.